3.5 Nonhomogeneous Equations and Undetermined Coefficients

Consider the general nonhomogeneous n th-order linear equation with constant coefficients

$$
\begin{equation*}
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=f(x) \tag{1}
\end{equation*}
$$

A general solution of Eq.(1) has the form

$$
y=y_{c}+y_{p}
$$

where the complementary function $y_{c}(x)$ is a general solution of the associated homogeneous equation

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=0
$$

and $y_{p}(x)$ is a particular solution of Eq. (1).

Method of Undetermined Coefficients
Example 1 Find a general solution y of the given equation. $(f(x)$ is a polynomial.)

$$
y^{\prime \prime}+4 y=3 x^{2}
$$

Ans: We have $y=y_{c}+y_{p}$. where y_{c} is a general solution to $y^{\prime \prime}+4 y=0$. and y_{p} is a particular solution to \geqslant.

- Find y_{c}. The char. egn. is $r^{2}+4=0 \Rightarrow r= \pm 2 i$

$$
y_{c}=c_{1} \cos 2 x+c_{2} \sin 2 x
$$

- Find y_{p}. Guess $y_{p}=A x^{2}+B x+C$.

$$
\begin{aligned}
& y_{p}^{\prime}=2 A x \\
& y_{p}^{\prime \prime}=2 A
\end{aligned}
$$

Thus the general solution
is
is $y(x)=y_{c}+y_{p}$

$$
=C_{1} \cos 2 x+C_{2} \sin 2 x
$$

We have $y_{p}^{\prime \prime}+4 y_{p}=3 x^{2}$

$$
\begin{aligned}
& \Rightarrow 2 A+4\left(A x^{2}+B x+C\right)=3 x^{2} \\
& \Rightarrow 4 A x^{2}+4 B x+(2 A+4 C)=3 x^{2} \\
& \Rightarrow\left\{\begin{array} { r l }
{ 4 A } & { = 3 } \\
{ B = 0 } \\
{ 2 A + 4 C } & { = 0 }
\end{array} \Rightarrow \left\{\begin{array}{ll}
A=\frac{3}{4} \\
B=0 \\
C=-\frac{3}{8}, & y_{p}
\end{array}=\frac{3}{4} x^{2}-\frac{3}{8} .\right.\right.
\end{aligned}
$$

$$
+\frac{3}{4} x^{2}-\frac{3}{8}
$$

Exercise 2 Find a particular solution y_{p} of the given equation. $\left(f(x)\right.$ is an exponential faction $e^{r x}$.)

$$
y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{2 x}
$$

Hint: $\operatorname{Try} y_{p}(x)=A e^{2 x}$ and solve for $A . \quad \Rightarrow \quad A=-\frac{1}{2}$
Ans: We guess $y_{p}(x)=A e^{2 x}$. Then $y_{p}^{\prime}=2 A e^{2 x}, y_{\rho}^{\prime \prime}=4 A e^{2 x}$
Then

$$
\begin{aligned}
& y_{p}^{\prime \prime}-3 y_{p}^{\prime}-4 y_{p}=3 e^{2 x} \\
\Rightarrow & 4 A e^{2 x}-6 A e^{2 x}-4 A e^{2 x}=3 e^{2 x} \\
\Rightarrow & -6 A=3 \Rightarrow A=-\frac{1}{2} .
\end{aligned}
$$

Thus $\quad y_{p}=-\frac{1}{2} e^{2 x}$

Example 3 Find a particular solution y_{p} of the given equation. $(f(x)$ is $\cos k x$ or $\sin k x$.)

$$
y^{\prime \prime}-3 y^{\prime}-4 y=2 \sin x
$$

ANS: We try $y_{p}=A \sin x+B \cos x$

$$
\begin{aligned}
& y_{p}^{\prime}=A \cos x-B \sin x \\
& y_{p}^{\prime \prime}=-A \sin x-B \cos x
\end{aligned}
$$

Then $y_{p}^{\prime \prime}-3 y_{p}^{\prime}-4 y_{p}=(-A \sin x-B \cos x)-3(A \cos x-B \sin x)$

$$
\begin{aligned}
& -4(A \sin x+B \cos x) \\
& =(-A+3 B-4 A) \sin x+(-B-3 A-4 B) \cos x \\
& =2 \sin x \\
& \Rightarrow\left\{\begin{array} { l l }
{ - 5 A + 3 B = 2 } \\
{ - 5 B - 3 A = 0 }
\end{array} \Rightarrow \left\{\begin{array}{ll}
A=-\frac{5}{17} \\
B=\frac{3}{17} . & \text { Thus }
\end{array}\right.\right. \\
& y_{p}=-\frac{5}{17} \sin x+\frac{3}{17} \cos x
\end{aligned}
$$

Example 4 Find a particular solution y_{p} of the given equation. $\left(f(x)\right.$ is $e^{r x} \cos k x$ or $\left.e^{r x} \sin k x\right)$

$$
\begin{aligned}
y_{p}^{\prime} & =A\left(e^{x} \cos 2 x-2 e^{x} \sin 2 x\right)+B\left(e^{x} \sin 2 x+2 e^{x} \cos 2 x\right) \\
& =(A+2 B) e^{x} \cos 2 x+(-2 A+B) e^{x} \sin 2 x \\
y_{p}^{\prime \prime} & =(-3 A+4 B) e^{x} \cos 2 x+(-4 A-3 B) e^{x} \sin 2 x
\end{aligned}
$$

Now we have

$$
\begin{aligned}
&-8 e^{x} \cos 2 x= y_{p}^{\prime \prime}-3 y_{p}^{\prime}-4 y_{p} \\
&=(-3 A+4 B) e^{x} \cos 2 x+(-4 A-3 B) e^{x} \sin 2 x \\
&-3\left[(A+2 B) e^{x} \cos 2 x+(-2 A+B) e^{x} \sin 2 x\right] \\
&-4\left[A e^{x} \cos 2 x+B e^{x} \sin 2 x\right] \\
& \begin{cases}10 A+2 B= & 8 \\
2 A-10 B= & \Rightarrow\left\{\begin{array}{l}
A=19 / 13 \\
B=2 / 13 .
\end{array} \text { Thus } y_{p}=\frac{10}{13} e^{x} \cos 2 x+\frac{2}{13} e^{x} \sin 2 x\right.\end{cases}
\end{aligned}
$$

Example 5 Find a particular solution y_{p} of the given equation. $\left(f(x)\right.$ (f is $\begin{array}{c}\text { 平combination) } \\ f_{2}(X)\end{array}$

$$
y^{\prime \prime}-3 y^{\prime}-4 y=3^{\prime \prime} 2 x+2 \sin x-8 e^{x y} \cos 2 x
$$

ANS: We can split the egn into 3 eqns.

$$
\begin{aligned}
& y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{2 x}=f_{1}(x) \\
& y^{\prime \prime}-3 y^{\prime}-4 y=2 \sin x=f_{2}(x) \\
& y^{\prime \prime}-3 y^{\prime}-4 y=-8 e^{x} \cos 2 x=f_{3}(x)
\end{aligned}
$$

Then by Ex. 2-4. we have

$$
y_{p}=-\frac{1}{2} e^{2 x}-\frac{5}{17} \sin x+\frac{3}{17} \cos x+\frac{10}{13} e^{x} \cos 2 x+\frac{2}{13} e^{x} \sin 2 x
$$

This is the case that $f(x)$ is a solution to the corresponding homogenes
The Case of Duplication
Example 6 Find a particular solution of $y^{\prime \prime}-4 y=2 e^{2 x}$
Ans: If we try $y_{p} \Rightarrow A e^{2 x}$, then $y_{p}^{\prime \prime}=4 A e^{2 x}$
Then $y_{p}^{\prime \prime}-4 y_{p}=4 A e^{2 x}-4 A e^{2 x}=0 \neq 2 e^{2 x}$
The reason is
The char. egn for the homogeneous part $y^{\prime \prime}-4 y=0$. is

$$
\gamma^{2}-4=0 \Rightarrow r= \pm 2 .
$$

Then $A e^{2 x}$ is a solution to $y^{\prime \prime}-4 y=0$.
We try $y_{p}=A \underline{x} e^{2 x}$, then $y_{p}^{\prime}=A\left(e^{2 x}+2 x e^{2 x}\right)$

$$
y_{p}^{\prime \prime}=2 A e^{2 x}+2 A\left(e^{2 x}+2 x e^{2 x}\right)=4 A e^{2 x}+4 A r e^{2 x}
$$

Then $\quad y_{p}^{\prime \prime}-4 y_{p}=4 A e^{2 x}+4 A x e^{2 x}-4 A x e^{2 x}=2 e^{2 x}$

$$
\Rightarrow \quad 4 A=2 \Rightarrow A=\frac{1}{2} .
$$

Thus $y_{p}=\frac{1}{2} \times e^{2 x}$

In general, we have the following:
If the function $f(x)$ is of either form of $P_{m}(x) e^{r x} \cos k x, P_{m}(x) e^{r x} \sin k x$, we can assume

$$
y_{p}(x)=x^{s}\left[\left(A_{0}+A_{1} x+\cdots+A_{m} x^{m}\right) e^{r x} \cos k x+\left(B_{0}+B_{1} x+\cdots+B_{m} x^{m}\right) e^{r x} \sin k x\right]
$$

where s is the smallest nonnegative integer such that no term in y_{p} duplicates a term in the complementary function y_{c}.

Summary (Reading)

We summarize the steps of finding the solution of an initial value problem consisting of a nonhomogeneous equation of the form

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=f(x) \tag{2}
\end{equation*}
$$

where a, b, c are constants, together with a given set of initial conditions:

1. Find the general solution of the corresponding homogeneous equation. $a y^{\prime \prime}+b y^{\prime}+c y=0$
2. Make sure that function $f(x)$ in Eq. (2) belongs to the class of functions discussed above; that is, be
3. Make sure that function $f(x)$ in Eq. (2) belongs to the class of functions discussed above; that is, be sure it involves nothing more than exponential functions, sines, cosines, polynomials, or sums or products of such functions. If this is not the case, use the method of variation of parameters (discussed in the following part of this section).
4. If $f(x)=f_{1}(x)+\cdots+f_{n}(x)$, that is, if $f(x)$ is a sum of n terms, then form n subproblems, each of which contains only one of the terms $f_{1}(x), \ldots, f_{n}(x)$. The i th subproblem consists of the equation

$$
a y^{\prime \prime}+b y^{\prime}+c y=f_{i}(x)
$$

where i runs from 1 to n. (see Example 5)
4. For the i th subproblem assume a particular solution $y_{i p}(x)$ consisting of the appropriate exponential function, sine, cosine, polynomial, or combination thereof. If there is any duplication in the assumed form of $y_{i p}(x)$ with the solutions of the homogeneous equation (found in step 1), then multiply $y_{i p}(x)$ by x, or (if necessary) by x^{2}, so as to remove the duplication. (See the table for general cases)
5. Find a particular solution $y_{i p}(t)$ for each of the subproblems. Then the sum $y_{1 p}(t)+y_{2 p}(t)+\cdots+y_{n p}(t)$ is a particular solution of the full nonhomogeneous Eq (2).
6. Form the sum of the general solution of the homogeneous equation (step 1) and the particular solution of the nonhomogeneous equation (step 5). This is the general solution of the nonhomogeneous equation.
7. Use the initial conditions to determine the values of the arbitrary constants remaining in the general solution.

$f(x)$	y_{p}
$P_{m}=b_{0}+b_{2} x+\cdots+b_{m} x^{m}$	$x^{s}\left(A_{0}+A_{1} x+A_{2} x^{2}+\cdots+A_{m} x^{m}\right)$
$a \cos k x+b \sin k x$	$x^{s}(A \cos k x+B \sin k x)$
$e^{r x}(a \cos k x+b \sin k x)$	$x^{s} e^{r x}(A \cos k x+B \sin k x)$
$P_{m}(x) e^{r x}$	$x^{s}\left(A_{0}+A_{1} x+A_{2} x^{2}+\cdots+A_{m} x^{m}\right) e^{r x}$
$P_{m}(x)(a \cos k x+b \sin k x)$	$x^{s}\left[\left(A_{0}+A_{1} x+x_{2} x^{2}+\cdots+A_{m} x^{m}\right) \cos k x+\right.$
	$\left.\left(B_{0}+B_{1} x+B_{2} x^{2}+\cdots+B_{m} x^{m}\right) \sin k x\right]$

$$
\cosh x=\frac{e^{x}+e^{-x}}{2} \quad \sinh x=\frac{e^{x}-e^{-x}}{2}
$$

Example $\mathbf{7}$ Set up the appropriate form of a particular solution y_{p}, but do not determine the values of the coefficients.
(a) $y^{\prime \prime}-4 y=\sinh 2 x=\frac{e^{2 x}-e^{-2 x}}{2}=\frac{1}{2} e^{2 x}-\frac{1}{2} e^{-2 x}=f_{1}(x)+f_{2}(x)$

ANS: Notice that the char. egn. for the corresponding homogeneous eqn is $r^{2}-4=0 \Rightarrow r= \pm 2$. Thus

$$
y_{c}=c_{1} e^{2 x}+c_{2} e^{-2 x}
$$

Thus

$$
y_{p}=\frac{A x}{T} e^{2 x}+\frac{B x}{T} e^{-2 x}
$$

since $e^{2 x}$ appears once in since $e^{-2 x}$ y_{c} appears once in y_{c}
polynomials
(b) $y^{\prime \prime}+3 y^{\prime}+2 y=x\left(e^{-x}-e^{-2 x}\right)=\underline{x} e^{-x}-\underline{x} e^{-2 x}=f_{1}(x)+f_{2}(x)$

ANS: The char. egn. for the homogeneous part is

$$
\begin{aligned}
& r^{2}+3 r+2=0 \\
\Rightarrow & (r+1)(r+2)=0 \\
\Rightarrow & r=-1 \text { or } r=-2
\end{aligned}
$$

Thus $\quad y_{c}=c_{1} e^{-x}+c_{2} e^{-2 x}$
Thus we assume once in y_{c}
(c) (Exercise) $\left(D^{D}-2\right)^{3}\left(D^{2}+9\right) y=x^{2} e^{2 x}+x \sin 3 x=f_{1}(x)+f_{2}(x$

ANS: The char eqn is

$$
\begin{aligned}
& (r-2)^{3}\left(r^{2}+9\right)=0 \\
\Rightarrow & r=2,2,2,3 i,-3 i
\end{aligned}
$$

Then $y_{c}=\left(c_{1}+c_{2} x+c_{3} x^{2}\right) e^{2 x}+c_{4} \cos 3 x+c_{5} \sin 3 x$

- Consider $f(x)=x^{2} e^{2 x}$. We assume

$$
\begin{aligned}
f_{1}(x) & =x^{2} e^{2 x} \text {. We assume } \\
y_{p 1}(x) & =x^{3}\left(A x^{2}+B x+c\right) e^{2 x} \text { from } \xrightarrow[T]{x} e^{2 x} \\
& \text { since } e^{2 x} \text { appears } 3 \text { times in } y_{c}
\end{aligned}
$$

Consider $f_{2}(x)=x \sin 3 x$ We assume ${ }^{\text {and }}$

$$
y_{p_{2}}(x)=\underset{\text { since }}{x}(D x+E) \sin 3 x \text { appears } \cos 3 x+x\left(F_{x}+G\right) \sin 3 x
$$

Thus $y_{p}(x)=x^{3}\left(A x^{2}+B x+C\right) e^{2 x}+x(D x+E) \cos 3 x+x(F x+G) \sin x$
(d) (Similar to online HW 18. Q9. Note it is a case of duplication)
$y^{(5)}+2 y^{(3)}+2 y^{\prime \prime}=3 x^{2}-1$
Note this is the case when we have

1. $r=0$ for the characteristic equation.
2. $f(x)$ is a polynomial $P_{m}(x)$.
$3 x^{2}-1$ is a solution to

$$
y^{(s)}+2 y^{(3)}+2 y^{\prime \prime}=0
$$

Try $y_{p}=A x^{2}+B x+C$ and plan in to the
If we have $r=0$ from the characteristic equation, decal tale table with $r=0$: egn. This won't work.

ANS: The char. egn for the homogeneous part is

$$
\begin{aligned}
& r^{5}+2 r^{3}+2 r^{2}=0 \\
\Rightarrow & r^{2}\left(r^{3}+2 r+2\right)=0
\end{aligned}
$$

$\Rightarrow r=0$ (twice)
The part in y_{c} corresponds to $r=0$ is $\left(c_{1}+c_{2} x\right) e^{0 x}=c_{1}+c_{2} x$
This means any function of the form $C_{1}+C_{2} \times$ will to a solution for the homogeneous part.
So we assume

$$
y_{p}=x^{2}\left(A x^{2}+B x+C\right)
$$

THEOREM 1 Variation of Parameters
If the nonhomogeneous equation $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=f(x)$ has complementary function $y_{c}(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)$, then a particular solution is given by

$$
y_{p}(x)=-y_{1}(x) \int \frac{y_{2}(x) f(x)}{W(x)} d x+y_{2}(x) \int \frac{y_{1}(x) f(x)}{W(x)} d x
$$

where $W=W\left(y_{1}, y_{2}\right)$ is the Wronskian of the two independent solutions y_{1} and y_{2} of the associated homogeneous equation.

If we write $u_{1}=-\int \frac{y_{2}(x) f(x)}{w(x)} d x, \quad u_{2}=\int \frac{y_{1}(x) f(x)}{w(x)} d x$.
Then $y_{p}=u_{1} y_{1}+u_{2} y_{2}$.
Example 8 Use the method of variation of parameters to find a particular solution of the liven differential equation.

$$
y^{\prime \prime}+9 y=2 \sec 3 x=2 \cdot \frac{1}{\cos 3 x}
$$

ANS: First, let's find y_{1} and y_{2}.
The char. eq is $r^{2}+q=0=r= \pm 3 i$.
Then $y_{c}=c_{1} y_{1}+c_{2} y_{2}=c_{1} \cos 3 x+c_{2} \sin 3 x$
Then

$$
\omega(x)=\omega\left(y_{1}, y_{2}\right)=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{ll}
\cos 3 x & \sin 3 x \\
-3 \sin 3 x & 3 \cos 3 x
\end{array}\right|=3
$$

We have

$$
\begin{aligned}
u_{1}(x)= & -\int \frac{y_{2}(x) f(x)}{w(x)} d x=-\int \frac{\sin 3 x \cdot 2 \cdot \frac{1}{\cos 3 x}}{3} d x=-\frac{2}{3} \int \tan 3 x d x \\
= & -\frac{2}{9} \int \tan 3 x d 3 x=\frac{2}{9} \ln |\cos 3 x| \\
& \int \tan t d t=-\ln |\cos t| d t+c \\
u_{2}(x)= & \int \frac{y_{1}(x) f(x)}{w(x)} d x=\int \frac{\cos 3 x \cdot 2 \cdot \frac{1}{\cos 3}}{3} d x=\frac{2}{3} \int d x=\frac{2}{3} x
\end{aligned}
$$

So $y_{p}=u_{1} y_{1}+u_{2} y_{2}=\frac{2}{9} \cos 3 x \ln |\cos 3 x|+\frac{2}{3} x \cdot \sin 3 x$

$$
y(x)=y_{c}+y_{p}
$$

Example 9 In the following question, a nonhomogeneous second-order linear equation and a complementary function y_{c} are given. Find a particular solution of the equation.

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=x^{4} ; y_{c}=x^{2}\left(c_{1}+c_{2} \ln x\right)=c_{1} \underline{x}^{2}+c_{2}{\underline{x^{2}} \ln x}^{\downarrow}
$$

ANS: Standard form: $y^{\prime \prime}-\frac{3}{x} y^{\prime}+\frac{4}{x^{2}} y=\underline{x}^{2}=f(x)$

$$
y_{c}=x^{2}\left(c_{1}+c_{2} \ln x\right)=c_{1} x^{2}+c_{2} x^{2} \ln x=c_{1} y_{1}+c_{2} y_{2}
$$

Then

$$
W(x)=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{ll}
x^{2} & x^{2} \ln x \\
2 x & 2 x \ln x+x
\end{array}\right|=2 x^{3} \ln x+x^{3}-2 x^{3} \ln x
$$

Then

$$
\begin{aligned}
u_{1}(x) & =-\int \frac{y_{2}(x) \cdot f(x)}{w(x)} d x=-\int \frac{\left(x^{2} \ln x\right) \cdot x^{2}}{x^{3}} d x \\
& =-\int x \frac{\ln x}{u} d x \quad \int u d v=u v-\int v d u \\
& =-\frac{1}{2} \int \ln x d x^{2} \\
& =-\frac{1}{2}\left[x^{2} \ln x-\int x^{2} d \ln x\right] \\
& =-\frac{1}{2}\left[x^{2} \ln x-\int x d x\right] \\
& =-\frac{1}{2}\left[x^{2} \ln x-\frac{1}{2} x^{2}\right] \\
& =-\frac{1}{2} x^{2} \ln x+\frac{1}{4} x^{2} \\
U_{2}(x) & =\int \frac{y_{1}(x) f(x)}{W(x)} d x=\int \frac{x^{2} \cdot x^{2}}{x^{3}} d x=\int x d x \\
& =\frac{1}{2} x^{2}
\end{aligned}
$$

Thus

$$
\begin{aligned}
y_{p} & =u_{1} y_{1}+u_{2} y_{2} \\
& =\underline{\left(-\frac{1}{2} x^{2} \ln x+\frac{1}{4} x^{2}\right) \cdot x^{2}}+\underline{\frac{1}{2} x^{2} \cdot x^{2} \ln x} \\
\Rightarrow y_{p} & =\frac{1}{4} x^{4}
\end{aligned}
$$

